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Summary. The current use of functionals to evaluate order-of-convergence of a nu-
merical scheme can lead to incorrect values. The problem comes about because of
interplay between the errors from the evaluation of the functional, e.g., quadrature
error, and from the numerical scheme discretization. Alternative procedures for de-
ducing the order-property of a scheme are presented. The problem is studied within
the context of the inviscid supersonic flow over a blunt body; however, the problem
and solutions presented are not unique to this example.

1 Introduction

Computational Aerodynamicists conduct most of their grid convergence stud-
ies by studying the behavior of solution functionals, e.g., drag, lift and moment
coefficients, as the computational grids are refined. Functionals are used for
several reasons: first, their accurate evaluation is of intrinsic value; and second,
they provide a means of determining convergence properties of a numerical
scheme without looking directly at hundreds of thousands of field point val-
ues. Ideally, an error measure should be used to examine order-properties of
grid convergence studies; however, exact solutions are usually not available for
flows of practical interest. Therefore, estimating convergence properties using
functionals is frequently the only course of action available.

However, there are some subtle problems associated with the use of func-
tionals for grid convergence studies, and if these problems are not recognized
and resolved, the results that follow from the use of functionals can be very
misleading. It is the purpose of this paper to expose these problems, and where
possible, suggest solutions.

There are many aspects of a numerical order-properties analysis that must
be done correctly in order for the analysis to be reliable. Paramount among
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these are: that grid refinements must be uniform, preferably with grids se-
quences that are hierarchical; and the iterative methods used to solve the
discrete equations on a given grid must be sufficiently converged, preferably
with residuals reduced several orders of magnitude below the solution error.
Of course, this is complicated by the fact that the errors are not known a
priori.

The problems that are associated with the use of functionals for the study
of grid convergence rates are illustrated with numerical results from the com-
putation of a blunt-body in an inviscid supersonic stream. However, it should
be emphasized that the problems discussed are not unique to the blunt-body
problem, indeed they are not unique to fluid mechanics, and may occur in any
grid convergence study involving functionals. The particular case studied is
the Mach 6 flow of an inviscid gas over a circular cylinder. In the numerical
implementation the problem is solved as a time dependent problem with the
bow shock wave fitted as a boundary of the flow. By fitting the shock, the
numerical scheme acts only on a smooth flow region. Thus, the computation
is limited to the layer bounded by the bow shock, the circular cylinder, the
symmetry line, and a supersonic outflow boundary imposed at some θ = θmax,
see Fig. 1.

Fig. 1. Supersonic blunt-body flow field, showing isobars, M∞ = 6.

The physical plane is transformed to a computational plane where N and
M mesh points are uniformly distributed between the body and the shock
and between the symmetry line and the outflow line, respectively. The predic-
tor/corrector MacCormack scheme [1] is used for the numerical integration of
the Euler equations.

Table 1 shows results obtained with a series of grids. The number of mesh
points corresponding to each kth grid are Nk = 3 × 2k and Mk = 5 × 2k.
Columns 2 and 3 display the inviscid drag coefficient computed with the
trapezoidal rule (TR) and with Simpson’s rule (SR). The drag coefficient
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order-of-convergence is given by

pk = log2

[
Cd,k − Cd,k+1

Cd,k+1 − Cd,k+2

]
, (1)

and is shown in the last two columns. The order-of convergence for k = 3
for TR and SR shows a large discrepancy and both results are significantly
greater than the formal order of the scheme which is second order. For k = 4,
the drag coefficient is not monotone and the order-of-convergence evaluation
fails. (Note that the order-of-convergence for grid k depends on the solutions
from grids k, k + 1, and k + 2).

Table 1. M∞ = 6 cases investigated. For the three finest grids the trapezoidal rule
(TR) computed drag is not monotone and for both quadrature rules the computed
drag exhibits super-convergence.

k Cd (TR) Cd (SR) p(TR) p(SR)

1 1.8755919 1.8767669 1.92 1.90
2 1.8706109 1.8709412 2.73 2.58
3 1.8692925 1.8693766 4.03 3.25
4 1.8690942 1.8691147 — —
5 1.8690821 1.8690872
6 1.8690859 1.8690872

To establish that there is reason to suspect these results, consider the
behavior of the error norm in total temperature. For this problem in the steady
state, the total enthalpy, and hence the total temperature, is constant. The L2

and L∞ norms of the total temperature error are shown in Fig. 2. The order-
of-convergence based on the L2 and L∞ norms is 2.03 and 1.84, respectively.
These are in fairly good agreement with the formal order of the scheme. Why
then is the order-of-convergence of the drag functional misbehaving?

2 Order-of-convergence of functionals

To answer the last question, first consider the following question: If the sur-
face pressure converges with order p, what should the expected order-of-
convergence of the drag-functional be? To this end, let the computed sur-
face pressure, Pc, normalized by the free stream pressure, P∞, be given by
Pc/P∞ = Pe/P∞ + α(θ)hp, where Pe is the exact surface pressure. The sec-
tional drag coefficient is defined by

Cd =
∫ θmax

0
(Pc/P∞ − 1) b(θ) cos(θ)dθ/

(
1
2γM2

∞Aref

)
(2)
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Fig. 2. L2 and L∞ of total temperature error for entire shock layer, based on results
from grids k = 3, 4, 5, with hk = 1/

√
NkMk.

where γ is the ratio of specific heats, M∞ is the free stream Mach number, b(θ)
is the body radius, and Aref is a reference surface area, here taken as the pro-
jected plan-form area. Therefore, Cd = Cd,e+ Γhp where Γ is a constant and
Cd,e is the exact value of the drag coefficient; therefore, the drag-functional
should converge with order p.

3 The problem with quadrature

If it is assumed that the pressure order-of-convergence behaves like the total
temperature order-of-convergence, then the result just obtained for drag is
not consistent with the results of Table 1. The problem lies in the numerical
integration of (2). The integration is approximated by a quadrature taken over
M equally spaced intervals on the surface of the cylinder, i.e.

∫ θmax

0 fdθ ≈
∑M+1

1 aifi. The quadrature has a leading error of order hq. It is easy to show
that Cd = Cd,e+βqhq + Γhp + O(hq+p), where βq is a constant and q equals
2 for TR and 4 for SR. Using this relation for Cd in (1) we find

p̄ = p + log2

{
2p−2βq [1− 2q] + hp−qΓ [1− 2p]

22(p−2)βq [1− 2q] + hp−qΓ [1− 2p]

}
, (3)

where h is the coarse grid spacing. Here p̄ is the computed order-of-convergence
and the log2-term is an error brought about by the interplay between the
quadrature error and algorithmic error. In the limit h → 0, the p̄ behavior is
given by p̄→ q if p ≥ q, and p̄→ p if p < q. However, in a computation h will
always be finite and having p < q is not a guarantee that the log2-term will
be small.
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4 How to eliminate the quadrature error

A solution to the quadrature problem can be found by studying (1). Consider
the numerator. The numerator is the difference between the drag coefficients
of the medium (k+1) and coarse (k) grids. The medium grid has a quadrature
error of order (h/2)2, while the coarse grid has a quadrature error of order h2.
These errors do not cancel out and their interplay with the algorithmic error
causes some (not all) of the problems in the results of Table 1. The solution is
to implement the quadrature in such a way that the quadrature errors of the
medium and coarse grids cancel. To do this, evaluate both the medium and
coarse grid quadratures using an h interval, i.e., use only every other point of
the medium grid. The same idea is applied to the denominator by evaluating
both the medium and fine grid quadratures using an h/2 interval.

5 Higher-order algorithmic error model

The actual algorithmic error in any numerical solution on any given grid
contains a full hierarchy of errors that are unknown, but are generally as-
sumed to be of the form uc,k = ue +

∑∞
n=p αnhn

k , where p is the unknown
actual order of the numerical method. The standard method for deducing or-
der properties from grid convergence, described earlier, is obtained by fitting
a single error mode of the form uc,k = ue + αhp

k to the actual error. For suf-
ficiently small h, the actual error is dominated by the lowest order term, and
the single mode model provides a good fit and an accurate prediction of the
order-of-convergence. However, for larger h above this asymptotic region (it is
surprising how small h has to be to reach asymptotic convergence), multiple
error modes are competing, and their projection onto a single mode can be
erroneous. Consider then a two-mode error model:

Cd,k = Cd,ex + α1h
p
k + α2h

p+1
k . (4)

For this model, using a sequence of four grids (k through k-3), where
hk/hk−1 = hk−1/hk−2 = hk−2/hk−3 = 2, we find the order-of-convergence
to be

p = log2




3∆k−2,k−1 −

√
9∆2

k−2,k−1 + 8∆k−1,k∆k−2,k−3

4∆k−1,k



 (5)

where ∆i,j = Cd,i − Cd,j . It is important to monitor the ratio α2h/α1.

α2h

α1
=

4(1− 2p)
(1− 2p+1)

(2p∆k−2,k−1 −∆k−1,k)
(∆k−2,k − 2p+1∆k−2,k−1)

(6)

When this ratio is less than one, the one-mode error model is valid. With
a two-mode error model and eliminating the quadrature error as previously
described, we obtain the results listed in Table 2. For more details see [2].
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Table 2. Drag order-of-convergence using higher order method and coarse grid
interval, k = 3, for quadrature rules.

k Cd (TR) Cd (SR) p(TR) p(SR)

3 1.8692925 1.8693766 1.674 1.681
4 1.8690328 1.8691145
5 1.8690056 1.8690872
6 1.8690056 1.8690871

6 Conclusions and recommendations

With the increased reliance in both science and engineering on the numerical
solution of partial differential equations, the subject of code verification has
become increasingly significant. An important element of code verification is
the study of grid convergence. Most studies today of this subject have been
at best superficial and in many cases painfully inadequate. This paper is an
attempt to reverse this trend by first highlighting a series of problems that ex-
ist in the standard order-of-convergence analysis, particularly as it relates to
the evaluation of functionals, and second by providing a number of solutions
and workarounds to these problems. It is important to distinguish between
a code verification effort and an effort to determine if a particular solution
to a specific problem is sufficiently accurate for some intended use. The two
tasks are very different. A rigorous grid convergence and order-of-convergence
study can aid in determining if an algorithm has been implemented correctly.
However, such a rigorous study requires grids of the same family and grid
refinements that are uniform, preferably with grids sequences that are nested.
In the second task, limited time and resources often lead to compromising one
or more attributes of a rigorous study. While non-uniform mesh refinement
may lead to some improvement in the solution, order-of-convergence prop-
erties computed from non-uniform refinements or ill-converged solutions sets
are meaningless. Whenever possible, error norms should be used to establish
the order-of-convergence. The higher order analysis developed in Sect. 5 is the
best way to evaluate if the asymptotic range has been reached or if more levels
of grid refinement are needed to reach it. It should be part of any rigorous
grid convergence study. Reference [2] provides a more in depth study of these
issues.
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